3.172 \(\int \frac {x}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=156 \[ \frac {4 i \text {Li}_2\left (-i e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d^2 \sqrt {a \cos (c+d x)+a}}-\frac {4 i \text {Li}_2\left (i e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d^2 \sqrt {a \cos (c+d x)+a}}-\frac {4 i x \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right )}{d \sqrt {a \cos (c+d x)+a}} \]

[Out]

-4*I*x*arctan(exp(1/2*I*(d*x+c)))*cos(1/2*d*x+1/2*c)/d/(a+a*cos(d*x+c))^(1/2)+4*I*cos(1/2*d*x+1/2*c)*polylog(2
,-I*exp(1/2*I*(d*x+c)))/d^2/(a+a*cos(d*x+c))^(1/2)-4*I*cos(1/2*d*x+1/2*c)*polylog(2,I*exp(1/2*I*(d*x+c)))/d^2/
(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3319, 4181, 2279, 2391} \[ \frac {4 i \text {Li}_2\left (-i e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d^2 \sqrt {a \cos (c+d x)+a}}-\frac {4 i \text {Li}_2\left (i e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d^2 \sqrt {a \cos (c+d x)+a}}-\frac {4 i x \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right )}{d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((-4*I)*x*ArcTan[E^((I/2)*(c + d*x))]*Cos[c/2 + (d*x)/2])/(d*Sqrt[a + a*Cos[c + d*x]]) + ((4*I)*Cos[c/2 + (d*x
)/2]*PolyLog[2, (-I)*E^((I/2)*(c + d*x))])/(d^2*Sqrt[a + a*Cos[c + d*x]]) - ((4*I)*Cos[c/2 + (d*x)/2]*PolyLog[
2, I*E^((I/2)*(c + d*x))])/(d^2*Sqrt[a + a*Cos[c + d*x]])

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3319

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[((2*a)^IntPart[n
]*(a + b*Sin[e + f*x])^FracPart[n])/Sin[e/2 + (a*Pi)/(4*b) + (f*x)/2]^(2*FracPart[n]), Int[(c + d*x)^m*Sin[e/2
 + (a*Pi)/(4*b) + (f*x)/2]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n
 + 1/2] && (GtQ[n, 0] || IGtQ[m, 0])

Rule 4181

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {\sin \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right ) \int x \csc \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right ) \, dx}{\sqrt {a+a \cos (c+d x)}}\\ &=-\frac {4 i x \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d \sqrt {a+a \cos (c+d x)}}-\frac {\left (2 \sin \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right )\right ) \int \log \left (1-i e^{i \left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \, dx}{d \sqrt {a+a \cos (c+d x)}}+\frac {\left (2 \sin \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right )\right ) \int \log \left (1+i e^{i \left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \, dx}{d \sqrt {a+a \cos (c+d x)}}\\ &=-\frac {4 i x \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d \sqrt {a+a \cos (c+d x)}}+\frac {\left (4 i \sin \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right )\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \left (\frac {c}{2}+\frac {d x}{2}\right )}\right )}{d^2 \sqrt {a+a \cos (c+d x)}}-\frac {\left (4 i \sin \left (\frac {1}{2} \left (c+\frac {\pi }{2}\right )+\frac {\pi }{4}+\frac {d x}{2}\right )\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \left (\frac {c}{2}+\frac {d x}{2}\right )}\right )}{d^2 \sqrt {a+a \cos (c+d x)}}\\ &=-\frac {4 i x \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d \sqrt {a+a \cos (c+d x)}}+\frac {4 i \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \text {Li}_2\left (-i e^{\frac {1}{2} i (c+d x)}\right )}{d^2 \sqrt {a+a \cos (c+d x)}}-\frac {4 i \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \text {Li}_2\left (i e^{\frac {1}{2} i (c+d x)}\right )}{d^2 \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 89, normalized size = 0.57 \[ -\frac {4 i \cos \left (\frac {1}{2} (c+d x)\right ) \left (-\text {Li}_2\left (-i e^{\frac {1}{2} i (c+d x)}\right )+\text {Li}_2\left (i e^{\frac {1}{2} i (c+d x)}\right )+d x \tan ^{-1}\left (e^{\frac {1}{2} i (c+d x)}\right )\right )}{d^2 \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((-4*I)*Cos[(c + d*x)/2]*(d*x*ArcTan[E^((I/2)*(c + d*x))] - PolyLog[2, (-I)*E^((I/2)*(c + d*x))] + PolyLog[2,
I*E^((I/2)*(c + d*x))]))/(d^2*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x}{\sqrt {a \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(x/sqrt(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x/sqrt(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [F]  time = 0.05, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a +a \cos \left (d x +c \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+a*cos(d*x+c))^(1/2),x)

[Out]

int(x/(a+a*cos(d*x+c))^(1/2),x)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(x/(a + a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(x/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________